AISI STANDARD

Test Standard for Determining the Strength and Deformation Behavior of Through-the-Web Punchout Cold-Formed Steel Wall Stud Bridging Connectors

2020 Edition
AISI STANDARD

Test Standard for Determining the Strength and Deformation Behavior of Through-the-Web Punchout Cold-Formed Steel Wall Stud Bridging Connectors

2020 Edition

Approved by
the AISI Committee on Specifications for the Design of Cold-Formed Steel Structural Members
DISCLAIMER

The material contained herein has been developed by the American Iron and Steel Institute Committee on Specifications for the Design of Cold-Formed Steel Structural Members. The organization and the Committee have made a diligent effort to present accurate, reliable, and useful information on testing of cold-formed steel members, components or structures. The Committee acknowledges and is grateful for the contributions of the numerous researchers, engineers, and others who have contributed to the body of knowledge on the subject. With anticipated improvements in understanding of the behavior of cold-formed steel and the continuing development of new technology, this material will become dated. It is anticipated that future editions of this test procedure will update this material as new information becomes available, but this cannot be guaranteed.

The materials set forth herein are for general information only. They are not a substitute for competent professional advice. Application of this information to a specific project should be reviewed by a registered professional engineer. Indeed, in most jurisdictions, such review is required by law. Anyone making use of the information set forth herein does so at their own risk and assumes any and all resulting liability arising therefrom.
PREFACE

The American Iron and Steel Institute Committee on Specifications developed this Standard to provide the methodology to determine the strength and deformation behavior of through-the-web punchout bridging connectors for cold-formed steel wall stud bracing for nonstructural and structural wall studs in light-frame construction.

This Standard applies to bridging connectors attached to a cold-formed steel wall stud and the bridging member by mechanical fastening.

The Committee acknowledges and is grateful for the contribution of the numerous engineers, researchers, producers and others who have contributed to the body of knowledge on this subject.

User Notes and Commentary are non-mandatory and copyrightable portions of this Standard.
Subcommittee 6 – Test-Based Design

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>K. Peterman, Chair</td>
<td>University of Massachusetts Amherst</td>
</tr>
<tr>
<td>H. H. Chen, Secretary</td>
<td>American Iron and Steel Institute</td>
</tr>
<tr>
<td>R. S. Douglas</td>
<td>National Council of Structural Engineers Associations</td>
</tr>
<tr>
<td>D. Fox</td>
<td>iSPAN Systems</td>
</tr>
<tr>
<td>S. R. Fox</td>
<td>Canadian Sheet Steel Building Institute</td>
</tr>
<tr>
<td>P. S. Green</td>
<td>Bechtel Power Corporation</td>
</tr>
<tr>
<td>R. B. Haws</td>
<td>Nucor Buildings Group</td>
</tr>
<tr>
<td>R. L. Madsen</td>
<td>Devco Engineering</td>
</tr>
<tr>
<td>J. R. Martin</td>
<td>Verco Decking</td>
</tr>
<tr>
<td>C. Moen</td>
<td>RunToSolve</td>
</tr>
<tr>
<td>N. A. Rahman</td>
<td>FDR Engineering</td>
</tr>
<tr>
<td>G. Ralph</td>
<td>ClarkDietrich Building Systems</td>
</tr>
<tr>
<td>V. E. Sagan</td>
<td>Metal Building Manufacturers Association</td>
</tr>
<tr>
<td>T. Samiappan</td>
<td>Quick Tie Products</td>
</tr>
<tr>
<td>B. W. Schafer</td>
<td>Johns Hopkins University</td>
</tr>
<tr>
<td>M. Schmeida</td>
<td>Gypsum Association</td>
</tr>
<tr>
<td>F. Sesma</td>
<td>California Expanded Metal Products</td>
</tr>
<tr>
<td>M. Speicher</td>
<td>NIST Engineering Laboratory</td>
</tr>
<tr>
<td>T. Sputo</td>
<td>Steel Deck Institute</td>
</tr>
<tr>
<td>S. Torabian</td>
<td>Cold-Formed Steel Research Consortium</td>
</tr>
<tr>
<td>C. Yu</td>
<td>University of North Texas</td>
</tr>
</tbody>
</table>
TEST STANDARD FOR DETERMINING THE STRENGTH AND DEFORMATION BEHAVIOR OF THROUGH-THE-WEB PUNCHOUT COLD-FORMED STEEL WALL STUD BRIDGING CONNECTORS

1. Scope

1.1 This Standard provides the methodology to determine the strength and deformation behavior of through-the-web punchout bridging connectors for cold-formed steel wall stud bracing for structural and nonstructural wall studs in light-frame construction. This Standard applies to bridging connectors attached to a cold-formed steel wall stud and the bridging member by mechanical fastening, welds or other means to resist torsional moment and axial force. See Figure 1 for illustration. This Standard does not apply to other types of bridging systems or to bridging systems that do not use a connector between the wall stud web and the bridging member.

User Note:
ASTM E72-15, Standard Test Methods of Conducting Strength Tests of Panels for Building Construction, provides a methodology to determine the axial compression and transverse strength of fully assembled wall panels. ASTM E72 may be used to confirm the overall strength of cold-formed steel walls with the bridging system and bridging connector.

1.2 Bridging connector assembly rotational strength is determined by testing a bridging connector assembly in accordance with this Standard. This strength value is used to design bracing for laterally loaded cold-formed steel wall studs.

1.3 Bridging connector lateral brace strength is determined by testing a bridging connector assembly in accordance with this Standard. This strength value is used to design bracing for cold-formed steel wall studs axially loaded in compression.
1.4 Bridging connector deformation behavior is determined by testing the bridging connector assembly in accordance with this Standard. This deformation value is used to calculate connection stiffness in order to design bracing for cold-formed steel wall studs axially loaded in compression.

1.5 This Standard consists of Sections 1 through 11 inclusive.

2. Referenced Documents

The following documents or portions thereof are referenced within this Standard and shall be considered as part of the requirements of this document:

a. American Iron and Steel Institute (AISI), Washington, DC:
 AISI S100-16 (2020) w/S2-20, North American Specification for the Design of Cold-Formed Steel Structural Members With Supplement 2

b. ASTM International (ASTM), West Conshohocken, PA:
 ASTM A370-20, Standard Test Methods and Definitions for Mechanical Testing of Steel Products
 ASTM E6-15e3, Standard Terminology Relating to Methods of Mechanical Testing
 IEEE/ASTM SI 10-16, American National Standard for Metric Practice

3. Terminology

Where the following terms appear in this Standard, they shall have the meaning as defined herein. Terms not defined in Section 3 of this Standard, AISI S100, or ASTM E6 shall have the ordinary accepted meaning for the context for which they are intended.

Brace Stiffness. The stiffness to restrain lateral translation at a brace point for an individual wall stud subjected to axial compression.

Bridging Connector. Device attaching the bridging member to the cold-formed steel wall stud and used to transmit forces between them.

Bridging Connector Assembly. An assembly consisting of the following components: (1) a bridging connector, (2) a bridging member with specified dimensions and properties, (3) a wall stud with specified dimensions and properties, and (4) fasteners or welds used to attach the bridging connector to a wall stud and bridging member.

Bridging Member. Continuous cold-formed steel member extending through the wall stud punchout and attached to and bracing the cold-formed steel wall stud.

Fastener. Bolts, screws, power-actuated fasteners, clinches, or other mechanical fasteners.

Lateral Brace Strength. Strength to resist lateral translation at a brace point for an individual wall stud subjected to axial compression.

Punchout. A hole made during the manufacturing process in the web of a wall stud.

Rotational Strength. Strength of the bridging connector assembly to resist the rotation of the wall stud about its longitudinal axis through the shear center.

Stud. A vertical framing member in a wall system or assembly.

4. Units of Symbols and Terms

Any compatible system of measurement units shall be permitted to be used in this Standard, except where explicitly stated otherwise. The unit systems considered in this Standard shall
include U.S. Customary units (force in kips and length in inches) and SI units (force in Newtons and length in millimeters) in accordance with IEEE/ASTM SI 10.

5. Precision

5.1 Loads shall be recorded to a precision of ±1 percent of the anticipated ultimate load during application of test loads.

5.2 Deflections shall be recorded to a precision of 0.001 in. (0.025 mm).

5.3 Devices used to measure loads and deflections shall be maintained in good operating order, used only in the proper range, and calibrated periodically.

5.4 Instrument calibration readings taken over the full range anticipated in the tests shall be accurate to no less than the precision requirements for the device given above.

6. Test Fixture

The test fixture shall consist of either:

(a) A hydraulic- or screw-operated testing machine capable of operating the removable crosshead at a constant rate of motion or a constant rate of loading, and a calibrated force-measuring device, or

(b) A loading device with a steel fixture, and a calibrated load cell.

User Note: It is recommended that ASTM E4-20, Standard Practices for Force Verification of Testing Machines, be used as applicable.

7. Test Specimen

7.1 The specimen shall consist of the bridging connector assembly and fasteners, welds, or other means used to connect the bridging member to the wall stud.

7.2 The minimum number of specimens tested shall comply with the requirements of Section K2 of AISI S100.

7.3 The steel properties of the bridging connector, bridging member, and wall stud, including yield stress, tensile strength, percent elongation, and uncoated base steel thickness shall be determined. Standard tension tests of the steel from which the bridging connector assembly was produced shall be conducted in accordance with ASTM A370 and Section K2.1(c) of AISI S100.

7.4 Fasteners used in bridging connector testing shall be selected at random from one manufacturer’s lot and installed in a manner that is representative of field conditions. Fastener strength shall be determined in accordance with AISI S100 or shall be determined in accordance with the published manufacturer’s catalog.

7.5 Welding, clinching or other fastening techniques are permitted in a manner that is representative of field conditions. The weld strength shall be determined in accordance with AISI S100.

8. Test Setup

8.1 General

8.1.1 The bridging connector assembly test setup shall consist of: (1) the bridging connector, (2)
the bridging member, (3) the wall stud with punchout, and (4) fasteners or welds used to attach the bridging connector to the wall stud and the bridging member.

8.1.2 The assemblies shall be tested in such a manner to simulate the essential function of the bridging connector assembly. Test loads shall be applied with reference to the intended end-use application of the bridging connector assembly.

User Note:
As the bridging assembly is subjected to load, through-the-web punchout bridging may interact with the stud web to provide resistance. The test setup should not inhibit web deformations that would occur under field conditions.

8.2 Bridging Assembly Rotational Strength Test

8.2.1 For the rotational strength assembly testing, a load shall be applied in a manner that will induce torsion in the wall stud.

User Note:
Figure 2 illustrates a force couple applied in a distributed manner to the wall stud flanges. Other test setups are also permitted. For instance, it is acceptable to apply the load to the bridging member while restraining the wall stud flanges. Whatever test setup is used, it is important to ensure that torsion can be measured by load cells via the applied load and the reactions, and that the minimum of the two measured values is used for rotational strength.

8.2.2 The bridging member shall extend half the length of the end-use wall stud spacing on either side of the wall stud with enough width to provide adequate contact surface for the bridging connector.

8.2.3 Reaction forces shall be measured with load cells at each end of the bridging member as the ends represent the inflection points of the end-use application.

User Note:
Although outside of the scope of this Standard, rotational stiffness can also be measured.

8.2.4 To avoid an unintentional load path, the wall studs used in the assembly test shall be of adequate length to prevent contact between the bridging connector and any element other than the bridging member and wall stud.

8.2.5 In narrow depth wall studs where the stiffener lips would otherwise come into contact with the bridging connector or bridging member during loading, the stiffener lips are permitted to be removed.

User Note:
In some assembly scenarios, it is possible that the bridging connector and/or bridging member will come into contact with the wall stud stiffener lips before failure is achieved, and this could result in unconservative results.

8.3 Bridging Assembly Lateral Brace Strength and Stiffness Test

8.3.1 For the lateral brace strength assembly testing (illustrated by Figure 3(a)), initial tests shall be performed to determine whether the bridging loaded in compression or loaded in tension governs the performance of the bridging connector assembly (illustrated by Figure 3(b), Section View A-A; or Figure 3(c), Section View B-B). The remaining tests are then permitted to be used for the governing loading condition.
Figure 2 – Rotational Strength Test Setup for Bridging Connector Assembly
8.3.2 Depending on the results from testing in accordance with Section 8.3.1, a compression or tension load shall be applied to the bridging member, which is attached to the wall stud by the bridging connector.

8.3.3 The deflection measuring device(s) shall measure the deflection of the bridging member from the load cell to the test fixture anchorage to the test bed (see Figure 3(b), Section View A-A; or Figure 3(c), Section View B-B). The base of the device(s) shall be located such that measurements include the deflection resulting from the wall stud web deformation, bridging connector deformation, bridging member deformation, and fastener slip.

8.3.4 The wall stud flanges shall be supported with bearing restraints without the use of fasteners that could alter the flexural response of the web. Each bearing surface shall be no more than 1/2 in. (12.7 mm) wide.

User Note: Depending on the bridging connector geometry and installation instructions, it is important that each bearing does not interfere with the bridging connector. Therefore, as illustrated by Figure 3, each bearing may be discontinuous in the vicinity of the bridging connector.

8.3.5 To avoid an unintentional load path, the wall studs used in the assembly shall be of adequate length and width to prevent contact between the bridging connector and any element other than the intended test fixture restraints.
Figure 3(b) – Section View A-A
(Cutting-Plane Line Shown in Figure 3(a))

Figure 3(c) – Section View B-B
(Cutting-Plane Line Shown in Figure 3(a))
9. Test Procedure

9.1 An initial load, or preload, shall not be applied for rotational strength load testing of the bridging connector assembly. For lateral brace strength load testing, a preload is permitted to be applied to the assembly. This preload shall not exceed 10 percent of the average ultimate load.

9.2 The assemblies shall be loaded such that the load is applied in reference to the intended application of the bridging connector. The test load shall be applied at a uniform rate not to exceed 0.03 radians per minute for 6-in. (152-mm) and 8-in. (203-mm) studs, and 0.06 radians per minute for 3-5/8-in. (92-mm) and 4-in. (102-mm) studs for the rotational strength test and a uniform rate not to exceed 0.1 in. (2.54 mm) per minute for the lateral brace strength test until failure or a maximum load is reached or when any portion of the wall stud other than the web comes in contact with the bridging member or bridging connector. Loads shall be recorded to a precision of ± 1 percent of the ultimate load during application of test loads.

User Note:
The rotation in the rotational strength test should be measured by dividing the summation of the horizontal displacements of the load cells at the bridging by the stud spacing if the stud is restrained, or the stud web rotation should be measured if the bridging is restrained. A rotational rate of 0.03 radians per minute is equivalent to 0.10 inch (2.54 mm) per minute on an 8-inch (203-mm) stud depth. A rate of 0.06 radians per minute is equivalent to 0.10 inch (2.54 mm) per minute on a 3-5/8-in. (92.1-mm) stud depth.

9.3 Load-deflection characteristics of the bridging connector shall be determined. The deflections shall be recorded to the nearest 0.001 in. (0.025 mm). Deflections shall be recorded at a sufficient number of load levels to permit the establishment of a load-deflection curve. At least eight readings shall be taken prior to reaching the load value for stiffness evaluation. Readings shall be taken throughout the test and not be grouped during a portion of the test, such as at the beginning, middle or end of test.

10. Data Evaluation

10.1 Evaluation of the test results and the determination of the available strength (allowable strength for ASD and design strength for LRFD) shall be made in accordance with the procedures described in Section K2 of AISI S100.

10.2 In cases where the stiffener lip is removed during the rotational strength assembly test, as permitted in Section 8.2.5, the available strength of the bridging connector shall also be limited to the load at which the bridging member or bridging connector would have engaged the stiffener lip.

10.3 For a bridging connector used to brace a wall stud loaded in axial compression, the stiffness shall be determined from the average values of the load-versus-deflection curves at 40 percent of the ultimate load.

Commentary:
The stiffness is determined from the average of load-versus-deflection curve at 40 percent of the maximum load as it was observed that the load-versus-deflection curve was initially linear within this load range. This is consistent with the approach that determines the stiffness of diaphragm systems. See AISI S907-17, Test Standard for Determining the Strength and Stiffness of Cold-Formed Steel Diaphragms by the Cantilever Test Method.

10.4 No test results shall be eliminated unless a rationale for their exclusion can be given.
11. Report

11.1 The test report shall include a description of the tested bridging connector assembly, including a drawing that details all pertinent dimensions of the assembly. The description shall also include information concerning each component of the tested bridging connector assembly.

11.2 The test report shall include the measured mechanical properties of the bridging connector, bridging member, and wall stud.

11.3 The test report shall include a description of any modifications made to the cold-formed steel members used in the bridging connector assembly testing.

11.4 The test report shall include a description of all the fasteners, welds, and other methods of attachment that are used in the test, including locations of fasteners and lengths of welds.

11.5 The test report shall include a description of the loading procedure and the test method, including a detailed drawing of the test setup, depicting location and direction of load application, location of deflection measurement instrumentation and their point of reference, and details of any deviations from the test requirements stipulated in Sections 6, 8 and 9. Additionally, photographs shall supplement the detailed drawings of the test setup.

11.6 For the lateral brace strength test, the test report shall include individual and average load-versus-deformation values and curves as plotted directly or as reprinted from data acquisition systems. For the rotational strength test, the test report shall include individual and average load-versus-rotation values and curves as plotted directly or as reprinted from data acquisition systems.

User Note:
For the rotational strength test, load-versus-rotation curves are not required but may be included in the report.

11.7 The test report shall include individual and average maximum test load values observed; description of the nature, type and location of failure exhibited by each bridging connector tested; and a description of the general behavior of the test assembly during load application. Additionally, photographs shall supplement the description of the failure mode(s).